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Memory Management

• Ideal memory
• Large
• Fast
• Non-volatile (keeps state without power)

• Memory hierarchy
• Extremely limited number of registers in CPU
• Small amount of fast, expensive memory – caches
• Lots of medium speed, medium price main memory
• Terabytes of slow, cheap disk storage

• Memory manager handles the memory hierarchy
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Basic Memory Management

Three simple ways of organizing memory for 
monoprogramming without swapping or paging (this is, an 
operating system with one user process)
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Multiprogramming with Fixed Partitions

• Fixed memory partitions
• separate input queues for each partition
• single input queue
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Probabilistic Model of Multiprocessing

• Each process is in CPU wait (i.e., blocked) for fraction f of the time

• There are n processes with one processor

• If the processes are independent of each other, then the probability 
that all processes are blocked is fn

• So, the probability that the CPU is busy is 1 – fn

• However, the processes are not independent
• They are all competing for one processor

• More than one process may be using any one I/O device

• Better model would be constructed using queuing theory
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Modeling Multiprogramming

CPU utilization as a function of number of processes in memory

Degree of multiprogramming

6



Analysis of Multiprogramming System 
Performance

• Arrival and work requirements of 4 jobs

• CPU utilization for 1 – 4 jobs with 80% I/O wait

• Sequence of events as jobs arrive and finish
• note numbers show amout of CPU time jobs get in each interval
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Relocation and Protection
• At time program is written, uncertain where program will be 

loaded in memory
• Therefore, address locations of variables and code cannot be absolute –

enforce relocation
• Must ensure that a program does not access other processes’ memory –

enforce protection

• Static vs. Dynamic Relocation
• Static Relocation

• Addresses are mapped from virtual to physical at the time a program is loaded into 
memory

• Program and data cannot be moved once loaded into memory
• Registers and data memory may contain addresses of instructions and data

• Dynamic Relocation
• Addresses are mapped from virtual to physical at the time a program is running

• Program and data can be moved in physical memory after being loaded
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Base and Limit Registers
• The base register value is added to user’s virtual address 

to map to a physical address – Relocation

• Virtual addresses greater than the limit register value is 
an erroneous memory address – Protection

• Allows only a single segment per process

• Does not allow a program to use more virtual address 
space than there is physical memory
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Swapping

Memory allocation changes as 
• Processes are loaded into memory
• Processes are swapped out of memory

Shaded regions are unused memory
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Data Components

• Static Storage Class Variables
• Either at block scope with the storage class designator static or at file scope
• Default initial value of zero

• If initialized to zero, in BSS Segment
• If initialized to a non-zero value, in Data Segment

• Lifetime is from program load time to program termination
• Only one instance of each variable

• Automatic Storage Class Variables
• No default initial value
• Lifetime is from block entry to block exit
• A new instance is created every time block is reentered
• More than one instance may exist because a function may be called recursively
• Stored on the stack

• Dynamic Memory
• No initial value
• Lifetime is from malloc to free
• Stored in the heap

11



Growth of Stack and Heap

• (a) Allocating space for growing data segments

• (b) Allocating space for growing stack & data segments
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Typical Memory Layout of a C Process
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Memory Management with Bit Maps

• Part of memory with 5 processes, 3 holes
• Tick marks show unit of allocation
• Shaded regions are free

• Bit map stores information about which allocation-units are free or 
used

• Encapsulates the same information as a list
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Memory Management with Linked Lists

Four neighbor combinations for the terminating process X

Shaded regions are free
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Algorithms for Allocation

• First Fit

• Next Fit
• Start search after previous allocation
• Worse than first fit

• Best Fit
• Find closest hole size
• Creates many small holes

• Worst Fit

• Quick Fit
• Maintain list(s) of useful-sized holes
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Approaches to Virtual Memory (VM)

• Under user control – overlays

• VM uses fixed size pages

• Where is the instruction/data referred to by an address?
• Some pages in memory

• Some pages on disk

• When a page is accessed that is not in memory, that causes a page 
fault

• Each process has its own page table – because each process has its 
own address space
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Virtual Memory – Address Translation

The location and function of the MMU
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Memory Management Unit (MMU)

• Translates
• Virtual addresses (VA) for program and data memory into…

• Physical addresses (PA) for memory and I/O devices

MMU
Virtual Address Physical Address
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Page Table Function

The mapping from
virtual memory addresses
to physical memory addresses
is given by the page table
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Components of Addresses

• High-order bits of VA, the page number, used to index into the page 
table

• Low-order bits of VA, the offset, used to index within the page

• High-order bits of the PA is called the page frame number

• Low-order bits of the PA, the offset, is passed unaltered from the VA
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Single-Level Page Table

Internal operation of an MMU with sixteen 4 KB pages and 
with eight 4 KB page frames 22



Two-Level Page Table

• 32 bit address with 2 page table fields

• Two-level page tables

Second-level page tables

Top-level 

page table
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Advantages of Two-Level Page Table (1 of 2)

• It does not use less memory for the page table if all virtual address 
space is utilized

• However, because the page table is allocated in chunks, if only 
portions of the virtual address space is utilized, significant savings 
may be garnered

• For example, imagine a 32-bit virtual address with 4K byte pages on a 
byte-addressable computer
• In a single-level page table, the page table has 220 or 1,048,576 (1M) PTEs

• Gives the program a virtual address space of 232 bytes or 4G bytes

• Assuming each PTE is four bytes, that’s 4M bytes just for the page table
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Advantages of Two-Level Page Table (2 of 2)

• Continuing with the assumptions of a 32-bit virtual address with 4K 
byte pages on a byte-addressable computer
• In a two-level page table

• 10 bits for the top-level table and 10 bits for the second-level tables

• Assume there are four virtual address spaces used of 222 bytes each
• Gives the program a virtual address space of 4 * 222 bytes or 16M bytes

• Requires four second-level page tables to be allocated

• The five page tables (i.e., the top-level page table and the four second-level page tables) 
have 5 * 210 entries
• Assuming each PTE and each pointer to a PTE is four bytes, that’s 5 * 210 * 4 bytes or 20K 

bytes for all the page tables
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Page Table Entry (PTE)

Typical page table entry
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PTE Fields

• Present/Absent
• Is this page in memory or on disk

• Protection
• Who can access this page and how
• Read, write, and execute access

• Modified
• Has the data in the page been changed since it was loaded

• Referenced
• Has the data in the page been accessed since it was loaded

• Caching Disabled
• Is the data in the page not allowed to be cached
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Number of Memory Accesses

• The page tables reside in memory!
• For each instruction that accesses only registers

• One access is required to read the PTE for the instruction address
• One access is required to read the instruction

• For each instruction that accesses one data field in memory
• One access is required to read the PTE for the instruction address
• One access is required to read the instruction
• One access is required to read the PTE for the data address
• One access is required to read the data word

• And so forth for instructions that access more than one data field (if they 
exist)

• How can we reduce the number of memory accesses?
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TLBs – Translation Lookaside Buffer

A TLB is a cache for the page table.  The TLB speeds 
up address translation from virtual to physical.
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TLB Function

• TLB implemented using a CAM (Content-Addressable Memory) also 
known of as an Associative Memory

• TLB faults can be handled by hardware or by software through a 
faulting mechanism (happens on SPARC, MIPS, HP PA)
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TLB Schematic
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Segmentation

• Utilizing a range of addresses in memory that is referenced by
• Segment number
• Offset within the segment

• The segments’ boundaries are usually meaningful to the programmer
• Module boundaries or Data segments
• Different memory protection schemes

• Read only
• Read-write
• Execute

• May be the basis for virtual memory without paging
• Entire segment is moved in and out of memory

• Or, may be layered on top of a paging system
• A page table exists for each segment
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Powers of Two

• 210 is 1K (Kilo)

• 220 is 1M (Mega)

• 230 is 1G (Giga)

• 240 is 1T (Tera)

• 250 is 1P (Peta)

• 260 is 1E (Exa)

• 270 is 1Y (Yotta)
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Large 64-bit Address Space

• 12-bit offset (address per page)

• 52-bit page number given to the MMU

• Page Size
• 12-bits implies 4K bytes/page for a byte addressable architecture

• Size of page table if all VAs are used
• 252 or 4P PTEs

• That’s too many!  Of course, we don’t have that much disk space either, but…  
We need an alternate way to map memory when address spaces get large
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Inverted Page Table

• Organize Inverted Page Table by PAs rather than by VAs

• One PTE per page frame – rather than per virtual page

• However, now there is a need to search through the inverted page 
table for the virtual page number!
• Obviously, this is very, very slow

• Many memory accesses per instruction or data access

• We rely on a large TLB to reduce the number of searches

• The inverted page table is often organized as a bucket hash table
• Reduces the time to linearly search within a bucket
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Inverted Page Table Comparison

Comparison of a traditional page table with an inverted page table
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I-Space and D-Space

• Virtual memory and page tables are often split into Instruction and Data 
Spaces

• Can enhance the performance of both caches and page tables

• Both I- and D-Spaces that are currently being used should be mapped into 
memory
• We don’t want accesses to data to cause program memory to be swapped out

• Behavior of I-Space
• More sequential access
• More locality of reference

• Loops
• Functions calling functions

• Execute (read) only
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Page Fault and Page Replacement Algorithms
• Page fault may force choice of page to be ejected

• If no empty pages, then determine which page must be ejected 
from memory

• Needed to make room for incoming page

• Modified page must first be saved
• Unmodified page is just overwritten
• Pages with code are never modified

• Accessed page must be read into memory
• Page table must be updated

• Better not to choose a frequently used page for ejection
• Will probably need to be brought back in soon
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Optimal Page Replacement Algorithm

• Replace page needed at the farthest time in future
• Optimal but unrealizable

• Estimate future reference pattern
• Log page use on previous runs of process

• Probably not reproducible

• Impractical

• Gives us a goal to attempt to attain
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Not Recently Used (NRU) Page Replacement Algorithm

• Each PTE has Referenced & Modified bits
• Both are cleared when pages are loaded

• Appropriate bit(s) set when page is referenced (read 
or written) and/or modified

• Periodically, the R bit is cleared

• Pages are classified
• Class 0: Not referenced, not modified

• Class 1: Not referenced, modified

• Class 2: Referenced, not modified

• Class 3: Referenced, modified

• NRU removes page from lowest class at random
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First-In, First-Out (FIFO) Page Replacement 
Algorithm

• Maintain a list of all pages
• Ordered by when they came into memory: most recent at the 

tail and the least recent at the head

• On page fault, page at head of list is replaced

• Disadvantage
• Page in memory the longest may be used frequently
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Second-Chance Page Replacement Algorithm

• Operation of a second chance
• Pages sorted in FIFO order
• R bit inspected before replacing the oldest page

• If R bit is set, the page is put at the tail of the list and the R bit is cleared

• Illustration above shows page list if fault occurs at time 20, and page A has its R bit set 
(the numbers above the pages are loading times)
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The Clock Page Replacement Algorithm

43



Least Recently Used (LRU) Page Replacement 
Algorithm

• Good Approximation to Optimal

• Assume pages used recently will used again soon
• Throw out page that has been unused for longest time

• Might keep a list of pages
• Most recently used at front, least recently used at rear

• Must update this list on every memory reference!

• Alternatively, maintain a 64-bit instruction count
• Counter incremented after each instruction

• Current counter value stored in PTE for page referenced

• Choose page whose PTE has the lowest counter value
• Still requires a time-consuming search for lowest value

44



LRU in Hardware using an n-by-n Bit Matrix (1 of 2)

• Start with all bits set to zero

• When page frame k is accessed
– Set bits in row k to 1

– Clear bits in column k to 0

• The row with lowest binary value is the LRU
– The row with the next lowest binary value is the next 

least recently used

– And so forth

45



LRU in Hardware using an n-by-n Bit Matrix (2 of 2)

LRU using bit matrix – reference string is:
0, 1, 2, 3, 2, 1, 0, 3, 2, 3
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• A simulation of LRU in Software

• Associate a counter with each page

• Initialize all counters to zero

• On occasional clock interrupts, examine the R bit for 
each page in memory
• Add one to the counter for a page if its R bit is set

• Choose page with lowest counter value for 
replacement

• Problem: frequently accessed pages continue to have 
large values – i.e., counters are never reset
• Fix: (1) Shift all counters right on clock interrupt
• (2) Set MSB if R bit is set

Not Frequently Used (NFU) Page Replacement Algorithm (1 of 2)
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• The aging algorithm simulates LRU in software

Not Frequently Used (NFU) Page Replacement Algorithm (2 of 2)

00010000

48



The Working Set Page Replacement Algorithm (1 of 2)

• The working set is the set of pages used by the k most recent memory references

• w(k, t) is the size of the working set at time, t

k
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The Working Set Page Replacement Algorithm (2 of 2)

The working set algorithm
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The WSClock Page Replacement Algorithm (1 of 2)

• Circular list of page frames – Initially empty

• Associate a time of last use, R bit, and M bit with 
each page

• On page fault, examine the R bit for page pointed 
to by clock hand
– If its R bit is set, clear the R bit and move hand to next page

– If its R bit is clear, and if its age is less than or equal to τ, advance 
the hand

– If its R bit is clear, and if its age is greater than τ and it is not 
modified, replace that page

– If its R bit is clear, and if its age is greater than τ and it is modified, 
schedule a write of that page to disk and advance the hand and 
examine the next page
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The WSClock Page Replacement Algorithm (2 of 2)

Operation of the WSClock algorithm
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Review of Page Replacement Algorithms
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Adding Page Frames

• In general, adding more page frames decreases the number of page 
faults, but…

• Belady’s Anomaly shows that this is not always true

• Stack Algorithms do work better with more page frames
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Belady's Anomaly

• With 3 page frames: 9 page faults; With 4 page frames, 10 page faults

All Page Frames are Initially Empty
Circles indicate Page Hits
P’s indicate Page Faults

FIFO page replacement with 3 page frames

FIFO page replacement with 4 page frames

Reference
String → 0 1 2 3 0 1 4 0 1 2 3 4

Page Frame 0: 0 0 0 3 3 3 4 4 4 4 4 ④

Page Frame 1: 1 1 1 0 0 0 ⓪ 0 2 2 2

Page Frame 2: 2 2 2 1 1 1 ① 1 3 3

Page
Faults → P P P P P P P P P

Reference
String → 0 1 2 3 0 1 4 0 1 2 3 4

Page Frame 0: 0 0 0 0 ⓪ 0 4 4 4 4 3 3

Page Frame 1: 1 1 1 1 ① 1 0 0 0 0 4

Page Frame 2: 2 2 2 2 2 2 1 1 1 1

Page Frame 3: 3 3 3 3 3 3 2 2 2

Page
Faults → P P P P P P P P P P
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