
Memory Management
Prof. James L. Frankel

Harvard University

Version of 4:48 PM 28-Feb-2024
Copyright © 2024, 2022, 2018, 2017, 2015 James L. Frankel. All rights reserved.

Memory Management

• Ideal memory
• Large
• Fast
• Non-volatile (keeps state without power)

• Memory hierarchy
• Extremely limited number of registers in CPU
• Small amount of fast, expensive memory – caches
• Lots of medium speed, medium price main memory
• Terabytes of slow, cheap disk storage

• Memory manager handles the memory hierarchy

2

Basic Memory Management

Three simple ways of organizing memory for
monoprogramming without swapping or paging (this is, an
operating system with one user process)

3

Multiprogramming with Fixed Partitions

• Fixed memory partitions
• separate input queues for each partition
• single input queue

4

Probabilistic Model of Multiprocessing

• Each process is in CPU wait (i.e., blocked) for fraction f of the time

• There are n processes with one processor

• If the processes are independent of each other, then the probability
that all processes are blocked is fn

• So, the probability that the CPU is busy is 1 – fn

• However, the processes are not independent
• They are all competing for one processor

• More than one process may be using any one I/O device

• Better model would be constructed using queuing theory

5

Modeling Multiprogramming

CPU utilization as a function of number of processes in memory

Degree of multiprogramming

6

Analysis of Multiprogramming System
Performance

• Arrival and work requirements of 4 jobs

• CPU utilization for 1 – 4 jobs with 80% I/O wait

• Sequence of events as jobs arrive and finish
• note numbers show amout of CPU time jobs get in each interval

7

Relocation and Protection
• At time program is written, uncertain where program will be

loaded in memory
• Therefore, address locations of variables and code cannot be absolute –

enforce relocation
• Must ensure that a program does not access other processes’ memory –

enforce protection

• Static vs. Dynamic Relocation
• Static Relocation

• Addresses are mapped from virtual to physical at the time a program is loaded into
memory

• Program and data cannot be moved once loaded into memory
• Registers and data memory may contain addresses of instructions and data

• Dynamic Relocation
• Addresses are mapped from virtual to physical at the time a program is running

• Program and data can be moved in physical memory after being loaded

8

Base and Limit Registers
• The base register value is added to user’s virtual address

to map to a physical address – Relocation

• Virtual addresses greater than the limit register value is
an erroneous memory address – Protection

• Allows only a single segment per process

• Does not allow a program to use more virtual address
space than there is physical memory

9

Swapping

Memory allocation changes as
• Processes are loaded into memory
• Processes are swapped out of memory

Shaded regions are unused memory

10

Data Components

• Static Storage Class Variables
• Either at block scope with the storage class designator static or at file scope
• Default initial value of zero

• If initialized to zero, in BSS Segment
• If initialized to a non-zero value, in Data Segment

• Lifetime is from program load time to program termination
• Only one instance of each variable

• Automatic Storage Class Variables
• No default initial value
• Lifetime is from block entry to block exit
• A new instance is created every time block is reentered
• More than one instance may exist because a function may be called recursively
• Stored on the stack

• Dynamic Memory
• No initial value
• Lifetime is from malloc to free
• Stored in the heap

11

Growth of Stack and Heap

• (a) Allocating space for growing data segments

• (b) Allocating space for growing stack & data segments
12

Typical Memory Layout of a C Process

13

Memory Management with Bit Maps

• Part of memory with 5 processes, 3 holes
• Tick marks show unit of allocation
• Shaded regions are free

• Bit map stores information about which allocation-units are free or
used

• Encapsulates the same information as a list

14

Memory Management with Linked Lists

Four neighbor combinations for the terminating process X

Shaded regions are free

15

Algorithms for Allocation

• First Fit

• Next Fit
• Start search after previous allocation
• Worse than first fit

• Best Fit
• Find closest hole size
• Creates many small holes

• Worst Fit

• Quick Fit
• Maintain list(s) of useful-sized holes

16

Approaches to Virtual Memory (VM)

• Under user control – overlays

• VM uses fixed size pages

• Where is the instruction/data referred to by an address?
• Some pages in memory

• Some pages on disk

• When a page is accessed that is not in memory, that causes a page
fault

• Each process has its own page table – because each process has its
own address space

17

Virtual Memory – Address Translation

The location and function of the MMU

18

Memory Management Unit (MMU)

• Translates
• Virtual addresses (VA) for program and data memory into…

• Physical addresses (PA) for memory and I/O devices

MMU
Virtual Address Physical Address

19

Page Table Function

The mapping from
virtual memory addresses
to physical memory addresses
is given by the page table

20

Components of Addresses

• High-order bits of VA, the page number, used to index into the page
table

• Low-order bits of VA, the offset, used to index within the page

• High-order bits of the PA is called the page frame number

• Low-order bits of the PA, the offset, is passed unaltered from the VA

21

Single-Level Page Table

Internal operation of an MMU with sixteen 4 KB pages and
with eight 4 KB page frames 22

Two-Level Page Table

• 32 bit address with 2 page table fields

• Two-level page tables

Second-level page tables

Top-level

page table

23

Advantages of Two-Level Page Table (1 of 2)

• It does not use less memory for the page table if all virtual address
space is utilized

• However, because the page table is allocated in chunks, if only
portions of the virtual address space is utilized, significant savings
may be garnered

• For example, imagine a 32-bit virtual address with 4K byte pages on a
byte-addressable computer
• In a single-level page table, the page table has 220 or 1,048,576 (1M) PTEs

• Gives the program a virtual address space of 232 bytes or 4G bytes

• Assuming each PTE is four bytes, that’s 4M bytes just for the page table

24

Advantages of Two-Level Page Table (2 of 2)

• Continuing with the assumptions of a 32-bit virtual address with 4K
byte pages on a byte-addressable computer
• In a two-level page table

• 10 bits for the top-level table and 10 bits for the second-level tables

• Assume there are four virtual address spaces used of 222 bytes each
• Gives the program a virtual address space of 4 * 222 bytes or 16M bytes

• Requires four second-level page tables to be allocated

• The five page tables (i.e., the top-level page table and the four second-level page tables)
have 5 * 210 entries
• Assuming each PTE and each pointer to a PTE is four bytes, that’s 5 * 210 * 4 bytes or 20K

bytes for all the page tables

25

Page Table Entry (PTE)

Typical page table entry

26

PTE Fields

• Present/Absent
• Is this page in memory or on disk

• Protection
• Who can access this page and how
• Read, write, and execute access

• Modified
• Has the data in the page been changed since it was loaded

• Referenced
• Has the data in the page been accessed since it was loaded

• Caching Disabled
• Is the data in the page not allowed to be cached

27

Number of Memory Accesses

• The page tables reside in memory!
• For each instruction that accesses only registers

• One access is required to read the PTE for the instruction address
• One access is required to read the instruction

• For each instruction that accesses one data field in memory
• One access is required to read the PTE for the instruction address
• One access is required to read the instruction
• One access is required to read the PTE for the data address
• One access is required to read the data word

• And so forth for instructions that access more than one data field (if they
exist)

• How can we reduce the number of memory accesses?

28

TLBs – Translation Lookaside Buffer

A TLB is a cache for the page table. The TLB speeds
up address translation from virtual to physical.

29

TLB Function

• TLB implemented using a CAM (Content-Addressable Memory) also
known of as an Associative Memory

• TLB faults can be handled by hardware or by software through a
faulting mechanism (happens on SPARC, MIPS, HP PA)

30

TLB Schematic

31

Page Number

Page Number

Page Number

Page Number

Page Frame
Number

Page Number

=

=

=

=

Virtual Address

Offset

Page Frame
Number

Page Frame
Number

Page Frame
Number

Page Frame
Number

Offset

TLB
Hit

Physical Address

Segmentation

• Utilizing a range of addresses in memory that is referenced by
• Segment number
• Offset within the segment

• The segments’ boundaries are usually meaningful to the programmer
• Module boundaries or Data segments
• Different memory protection schemes

• Read only
• Read-write
• Execute

• May be the basis for virtual memory without paging
• Entire segment is moved in and out of memory

• Or, may be layered on top of a paging system
• A page table exists for each segment

32

Powers of Two

• 210 is 1K (Kilo)

• 220 is 1M (Mega)

• 230 is 1G (Giga)

• 240 is 1T (Tera)

• 250 is 1P (Peta)

• 260 is 1E (Exa)

• 270 is 1Y (Yotta)

33

Large 64-bit Address Space

• 12-bit offset (address per page)

• 52-bit page number given to the MMU

• Page Size
• 12-bits implies 4K bytes/page for a byte addressable architecture

• Size of page table if all VAs are used
• 252 or 4P PTEs

• That’s too many! Of course, we don’t have that much disk space either, but…
We need an alternate way to map memory when address spaces get large

34

Inverted Page Table

• Organize Inverted Page Table by PAs rather than by VAs

• One PTE per page frame – rather than per virtual page

• However, now there is a need to search through the inverted page
table for the virtual page number!
• Obviously, this is very, very slow

• Many memory accesses per instruction or data access

• We rely on a large TLB to reduce the number of searches

• The inverted page table is often organized as a bucket hash table
• Reduces the time to linearly search within a bucket

35

Inverted Page Table Comparison

Comparison of a traditional page table with an inverted page table

36

I-Space and D-Space

• Virtual memory and page tables are often split into Instruction and Data
Spaces

• Can enhance the performance of both caches and page tables

• Both I- and D-Spaces that are currently being used should be mapped into
memory
• We don’t want accesses to data to cause program memory to be swapped out

• Behavior of I-Space
• More sequential access
• More locality of reference

• Loops
• Functions calling functions

• Execute (read) only

37

Page Fault and Page Replacement Algorithms
• Page fault may force choice of page to be ejected

• If no empty pages, then determine which page must be ejected
from memory

• Needed to make room for incoming page

• Modified page must first be saved
• Unmodified page is just overwritten
• Pages with code are never modified

• Accessed page must be read into memory
• Page table must be updated

• Better not to choose a frequently used page for ejection
• Will probably need to be brought back in soon

38

Optimal Page Replacement Algorithm

• Replace page needed at the farthest time in future
• Optimal but unrealizable

• Estimate future reference pattern
• Log page use on previous runs of process

• Probably not reproducible

• Impractical

• Gives us a goal to attempt to attain

39

Not Recently Used (NRU) Page Replacement Algorithm

• Each PTE has Referenced & Modified bits
• Both are cleared when pages are loaded

• Appropriate bit(s) set when page is referenced (read
or written) and/or modified

• Periodically, the R bit is cleared

• Pages are classified
• Class 0: Not referenced, not modified

• Class 1: Not referenced, modified

• Class 2: Referenced, not modified

• Class 3: Referenced, modified

• NRU removes page from lowest class at random

40

First-In, First-Out (FIFO) Page Replacement
Algorithm

• Maintain a list of all pages
• Ordered by when they came into memory: most recent at the

tail and the least recent at the head

• On page fault, page at head of list is replaced

• Disadvantage
• Page in memory the longest may be used frequently

41

Second-Chance Page Replacement Algorithm

• Operation of a second chance
• Pages sorted in FIFO order
• R bit inspected before replacing the oldest page

• If R bit is set, the page is put at the tail of the list and the R bit is cleared

• Illustration above shows page list if fault occurs at time 20, and page A has its R bit set
(the numbers above the pages are loading times)

42

The Clock Page Replacement Algorithm

43

Least Recently Used (LRU) Page Replacement
Algorithm

• Good Approximation to Optimal

• Assume pages used recently will used again soon
• Throw out page that has been unused for longest time

• Might keep a list of pages
• Most recently used at front, least recently used at rear

• Must update this list on every memory reference!

• Alternatively, maintain a 64-bit instruction count
• Counter incremented after each instruction

• Current counter value stored in PTE for page referenced

• Choose page whose PTE has the lowest counter value
• Still requires a time-consuming search for lowest value

44

LRU in Hardware using an n-by-n Bit Matrix (1 of 2)

• Start with all bits set to zero

• When page frame k is accessed
– Set bits in row k to 1

– Clear bits in column k to 0

• The row with lowest binary value is the LRU
– The row with the next lowest binary value is the next

least recently used

– And so forth

45

LRU in Hardware using an n-by-n Bit Matrix (2 of 2)

LRU using bit matrix – reference string is:
0, 1, 2, 3, 2, 1, 0, 3, 2, 3

46

• A simulation of LRU in Software

• Associate a counter with each page

• Initialize all counters to zero

• On occasional clock interrupts, examine the R bit for
each page in memory
• Add one to the counter for a page if its R bit is set

• Choose page with lowest counter value for
replacement

• Problem: frequently accessed pages continue to have
large values – i.e., counters are never reset
• Fix: (1) Shift all counters right on clock interrupt
• (2) Set MSB if R bit is set

Not Frequently Used (NFU) Page Replacement Algorithm (1 of 2)

47

• The aging algorithm simulates LRU in software

Not Frequently Used (NFU) Page Replacement Algorithm (2 of 2)

00010000

48

The Working Set Page Replacement Algorithm (1 of 2)

• The working set is the set of pages used by the k most recent memory references

• w(k, t) is the size of the working set at time, t

k

49

The Working Set Page Replacement Algorithm (2 of 2)

The working set algorithm

50

The WSClock Page Replacement Algorithm (1 of 2)

• Circular list of page frames – Initially empty

• Associate a time of last use, R bit, and M bit with
each page

• On page fault, examine the R bit for page pointed
to by clock hand
– If its R bit is set, clear the R bit and move hand to next page

– If its R bit is clear, and if its age is less than or equal to τ, advance
the hand

– If its R bit is clear, and if its age is greater than τ and it is not
modified, replace that page

– If its R bit is clear, and if its age is greater than τ and it is modified,
schedule a write of that page to disk and advance the hand and
examine the next page

51

The WSClock Page Replacement Algorithm (2 of 2)

Operation of the WSClock algorithm
52

Review of Page Replacement Algorithms

53

Adding Page Frames

• In general, adding more page frames decreases the number of page
faults, but…

• Belady’s Anomaly shows that this is not always true

• Stack Algorithms do work better with more page frames

54

Belady's Anomaly

• With 3 page frames: 9 page faults; With 4 page frames, 10 page faults

All Page Frames are Initially Empty
Circles indicate Page Hits
P’s indicate Page Faults

FIFO page replacement with 3 page frames

FIFO page replacement with 4 page frames

Reference
String → 0 1 2 3 0 1 4 0 1 2 3 4

Page Frame 0: 0 0 0 3 3 3 4 4 4 4 4 ④

Page Frame 1: 1 1 1 0 0 0 ⓪ 0 2 2 2

Page Frame 2: 2 2 2 1 1 1 ① 1 3 3

Page
Faults → P P P P P P P P P

Reference
String → 0 1 2 3 0 1 4 0 1 2 3 4

Page Frame 0: 0 0 0 0 ⓪ 0 4 4 4 4 3 3

Page Frame 1: 1 1 1 1 ① 1 0 0 0 0 4

Page Frame 2: 2 2 2 2 2 2 1 1 1 1

Page Frame 3: 3 3 3 3 3 3 2 2 2

Page
Faults → P P P P P P P P P P

55

	Slide 1: Memory Management
	Slide 2: Memory Management
	Slide 3: Basic Memory Management
	Slide 4: Multiprogramming with Fixed Partitions
	Slide 5: Probabilistic Model of Multiprocessing
	Slide 6: Modeling Multiprogramming
	Slide 7: Analysis of Multiprogramming System Performance
	Slide 8: Relocation and Protection
	Slide 9: Base and Limit Registers
	Slide 10: Swapping
	Slide 11: Data Components
	Slide 12: Growth of Stack and Heap
	Slide 13: Typical Memory Layout of a C Process
	Slide 14: Memory Management with Bit Maps
	Slide 15: Memory Management with Linked Lists
	Slide 16: Algorithms for Allocation
	Slide 17: Approaches to Virtual Memory (VM)
	Slide 18: Virtual Memory – Address Translation
	Slide 19: Memory Management Unit (MMU)
	Slide 20: Page Table Function
	Slide 21: Components of Addresses
	Slide 22: Single-Level Page Table
	Slide 23: Two-Level Page Table
	Slide 24: Advantages of Two-Level Page Table (1 of 2)
	Slide 25: Advantages of Two-Level Page Table (2 of 2)
	Slide 26: Page Table Entry (PTE)
	Slide 27: PTE Fields
	Slide 28: Number of Memory Accesses
	Slide 29: TLBs – Translation Lookaside Buffer
	Slide 30: TLB Function
	Slide 31: TLB Schematic
	Slide 32: Segmentation
	Slide 33: Powers of Two
	Slide 34: Large 64-bit Address Space
	Slide 35: Inverted Page Table
	Slide 36: Inverted Page Table Comparison
	Slide 37: I-Space and D-Space
	Slide 38: Page Fault and Page Replacement Algorithms
	Slide 39: Optimal Page Replacement Algorithm
	Slide 40: Not Recently Used (NRU) Page Replacement Algorithm
	Slide 41: First-In, First-Out (FIFO) Page Replacement Algorithm
	Slide 42: Second-Chance Page Replacement Algorithm
	Slide 43: The Clock Page Replacement Algorithm
	Slide 44: Least Recently Used (LRU) Page Replacement Algorithm
	Slide 45: LRU in Hardware using an n-by-n Bit Matrix (1 of 2)
	Slide 46: LRU in Hardware using an n-by-n Bit Matrix (2 of 2)
	Slide 47: Not Frequently Used (NFU) Page Replacement Algorithm (1 of 2)
	Slide 48: Not Frequently Used (NFU) Page Replacement Algorithm (2 of 2)
	Slide 49: The Working Set Page Replacement Algorithm (1 of 2)
	Slide 50: The Working Set Page Replacement Algorithm (2 of 2)
	Slide 51: The WSClock Page Replacement Algorithm (1 of 2)
	Slide 52: The WSClock Page Replacement Algorithm (2 of 2)
	Slide 53: Review of Page Replacement Algorithms
	Slide 54: Adding Page Frames
	Slide 55: Belady's Anomaly

